

Advanced Noise Reduction Techniques and Improvements

Robert E. Ryan Mary Pagnutti Kara Holekamp Innovative Imaging and Research Building 1103 Suite 140 C Stennis Space Center, MS 39529

JACIE/ASPRS 2014 Louisville, KY March 27, 2014

What is Denoising & Why?

- Denoising is the process of removing noise hopefully without removing information.
 - Edge Preserving Filters
 - Bilateral Filter (Common)
 - Nonlocal Means
 - Sparse Methods (Computationally Intensive)
 - Wavelet
 - SVD
 - DCT Based
 - •
- Improved spatial resolution, increased coverage and acquiring imagery over wider illumination conditions generally decrease SNR

Digital Camera Radiometric Performance

Smaller detectors are needed to keep the sensor size down but decreases SNR if GSD is to be reduced

Extending the Imaging Envelope

 Terrestrial optical imaging visible-near infrared (no thermal) in low natural and artificial lighting

Why?

- Disaster response for hurricanes, fires, earth quakes, tsunamis, etc. desire all weather all condition imagery
- Human activity (mapping artificial lights)
- Light pollution(environmental, astronomy & energy)
- Improved cloud statistics

Standard Pan Sharpened Image

Solar Elev. 0°

Solar Elev. 0°

~ 1-2 Minutes after sunset

~5 minutes past sunset

Imagery acquired ~10 minutes past sunset

Standard Pan Sharpened Imagery

45 minutes after sunset

General Denoising Approach

Noise Estimation

- The noise level is needed to set noise thresholds
- Noise depends on both signal levels and sensor characteristics
 - Adaptive noise estimation techniques are needed that work on the imagery of interest

Laboratory Estimation of Noise

- Integrating sphere images can be used estimate variance vs. DN
- Integrating Spheres acquired at different apertures provided imagery at varying DN levels
 - Mean DN and variance values were estimated using a 3x3 moving window
 - Values were grouped into 100DN wide bins and average variance per bin was found
 - Binned DN and variance data from all apertures was combined
- A linear curve fit through the combined binned variance data provided the relationship between DN level and noise

Absolute Radiometric Calibration System

Integrating Sphere Images

- Used to flat field images and measure SNR
- Note SNR will depend on location

Flat Fielding Image2D FPA

036 Red Band

036 Green Band

036 Blue Band

036 NIR Band

Noise Estimation Using Discrete Transforms

DCT Method Enables Measurement of Noise In Presence of Structure

Implementation and Evaluations

- Several selected denoising algorithms were implemented and optimized parameters were determined
 - Exact single band bilateral filter adaptive noise
 - DCT Patch algorithm
- Algorithms were applied to Aerial images from different acquisitions for testing

Bilateral Filter

- Bilateral filtering is a method of smoothing images that combines two separate types of filtering
 - Spatial filter weights pixels in the neighborhood surround a center pixel based on distance
 - Gaussian function used for spatial filtering
 - Intensity filter weights neighborhood pixels based on the similarity of intensity values
 - Preserves edges by only allowing pixels with similar intensity values to be included in the spatial filter
 - Intensity filter parameter closely related to image noise
- Operates on each band of an image independently

General Bilateral Filter Formulation2

Spatial Filter

$$G(p) = \frac{\iint I(q) \ D(q,p) \ dq}{\iint D(q,p) \ dq}$$

- Where I is the input image, p is the neighborhood center pixel, and D is a function of Euclidean distance between pixel q and the center pixel p
- Intensity Filter

•
$$F(p) = \frac{\iint I(q) R(I(q),I(p)) dq}{\iint R(I(q),I(p)) dq}$$

- Where R is a function of the image intensity between values at neighborhood pixel q and center pixel p
- Combined Bilateral Filter

$$B(p) = \frac{\iint I(q) \ D(q,p) \ R(I(q),I(p)) \ dq}{\iint D(q,p) \ R(I(q),I(p)) \ dq}$$

Implemented Gaussian Bilateral Filter2

Gaussian Spatial Function

$$D(q,p) = e^{-\left(\frac{(x-c)^2 + (y-r)^2}{2\sigma_D^2}\right)}$$

• Where, (x,y) and (r,c) are the image row/column locations of pixels q and p, and the standard deviation, σD , defines the width of the gaussian function

Gaussian Intensity Function

$$R(I(q),I(p)) = e^{-\left(\frac{(I(q)-I(p))^2}{2\sigma_R^2}\right)}$$

• Where, I(q) and I(p) are the image intensity values at pixels q and p, and the standard deviation, σR , defines the width of the intensity range

Bilateral Filter

$$B(p) = \frac{\sum_{q} I(q) D(q,p) R(I(q),I(p))}{\sum_{q} D(q,p) R(I(q),I(p))}$$

Bilateral Filter Test Parameters

- Test edge
 - 51 x 51 pixels (= neighborhood size)
 - Maximum image intensity (DN) = 1000
- Image noise varied between 2 and 4 % of maximum DN
- \bullet σ_D varied between 5 and 10
- \bullet σ_R varied between 1, 2, and 5 times the image noise

Test Edge – $\sigma_D = 5$ Image Noise = 2% of Max

Test Edge – $\sigma_D = 10$ Image Noise = 2% of Max DN

Test Edge – $\sigma_D = 5$ Image Noise = 4% of Max DN

Test Edge – $\sigma_D = 10$ Image Noise = 4% of Max DN

Example Image Results

Sample areas taken from Stennis and Wbroad images

Exact Bilateral Filter with Adaptive Noise

Filtered Unfiltered

DCT Patch with Adaptive Noise

Filtered Unfiltered

Exact Bilateral Filter with Adaptive Noise

Unfiltered Filtered

Unfiltered Filtered

Exact Bilateral Filter with Adaptive Noise

Unfiltered Filtered

Unfiltered Filtered

Exact Bilateral Filter with Adaptive Noise

Exact Bilateral Filter with Adaptive Noise

Filtered Unfiltered

DCT Pan Filtering Examples

DMCII Low Light data acquired over Columbus OH

GSD: 36 cm (MS) and 17.6cm (pan)

Summary

- Smaller GSD and extended imaging envelopes are driving the SNR
- Denoising techniques can improve final product without significantly blurring the imagery
 - Traditional Bilateral & Sparse Methods can be used on high resolution imagery to improve SNR
 - Adaptive intra-image noise estimation techniques are needed